RSS

SMP8: Look for and Express Regularity in Repeated Reasoning #LL2LU

05 Apr

We want every learner in our care to be able to say

I can look for and express regularity in repeated reasoning.

CCSS.MATH.PRACTICE.MP8

1 Screen Shot 2015-04-04 at 4.01.27 PM

But what if I can’t look for and express regularity in repeated reasoning yet? What if I need help? How might we make a pathway for success?

Level 4

I can attend to precision as I construct a viable argument to express regularity in repeated reasoning.

Level 3

I can look for and express regularity in repeated reasoning.

Level 2

I can identify and describe patterns and regularities, and I can begin to develop generalizations.

Level 1

I can notice and note what changes and what stays the same when performing calculations or interacting with geometric figures.

 

What do you notice? What changes? What stays the same?

We use a CAS (computer algebra system) to help our students practice look for and express regularity in repeated reasoning.

2 03-27-2015 Image001

What do we need to factor for the result to be (x-4)(x+4)?

What do we need to factor for the result to be (x-9)(x+9)?

What will the result be if we factor x²-121?

3 03-27-2015 Image004

What will the result be if we factor x²-a²?

We can also explore over what set of numbers we are factoring using the syntax we have been using. And what happens if we factor x²+1? (And then connect the result to the graph of y=x²+1.)

 

What happens if we factor over the set of real numbers?

5 03-27-2015 Image002

Or over the set of complex numbers?

5-5 03-27-2015 Image018

What about expanding the square of a binomial?

6 03-27-2015 Image006

What changes? What stays the same? What will the result be if we expand (x+5)²?

7 03-27-2015 Image007

Or (x+a)²?

8 03-27-2015 Image008

Or (x-a)²?

9 03-27-2015 Image009

10 03-27-2015 Image010

What about expanding the cube of a binomial?

12 03-27-2015 Image012

14 03-27-2015 Image014

Or expanding (x+1)^n, or (x+y)^n?

11 03-27-2015 Image011

What if we are looking at powers of i?

16 03-27-2015 Image01617 03-27-2015 Image017

We can look for and express regularity in repeated reasoning when factoring the sum or difference of cubes. Or simplifying radicals. Or solving equations.

Through reflection and conversation, students make connections and begin to generalize results. What opportunities are you giving your students to look for and express regularity in repeated reasoning? What content are you teaching this week that you can #AskDontTell?

[Cross-posted on Experiments in Learning by Doing]

 

Tags: , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
%d bloggers like this: