RSS

The Magic Octagon – Dan’s, Andrew’s, and mine

I had saved Andrew’s post in my folder for a recent lesson, which was about Dan’s video.

We paused halfway in, and students decided where it would be. They answered a Quick Poll to let me know, and by the time they had all answered, some had changed their minds.

1-screenshot-2016-09-21-10-44-25

We quickly looked at the responses, and they decided using time would be easier to decipher than some of the other descriptions.

I sent a second poll. I waited for everyone to answer, even the ones who wanted to take their time thinking about it.

2-screenshot-2016-09-21-10-44-43

And then we continued to watch.

We paused for the last question, they discussed with their team, and then we finished watching.

Good conversation. But we didn’t get to the sequel proposed by one of Andrew’s students: If the front side arrow is pointed at 5:00, would the other arrow point at 5:00, too? Why or why not?

So I emailed that question to my students.

  • Yes, the two points move like opposite hands on a clock moving closer to each other and overlapping at 5:00. At about 11:00 they would overlap again. Otherwise, there is no overlap.
  • They would be at 5:00. This is because when he flips the magic octagon, the back arrow also flips, causing the new time to be 3:00 instead of 9:00. This means that if you were to find a line of reflection, you could flip the octagon on that line and the arrow would always land right where the previous one did. If this was on transparent paper, you can see that if one arrow points to 5:00, then the other one would be pointing at 7:00. But if you were to flip the octagon on the reflection line which intersects 12:00 and 6:00, then you would continuously get 5:00 because of the reflection.

As I got the responses from students, I realized that I wished I had asked a different question. While I did include why or why not, and it was obvious from the responses that students didn’t just answer yes or no, I wish I had asked “At what time(s), if any, are the front side and back side arrows at the same time?”

I am reminded of something I can no longer find that I read in a book. A group of teachers observed a “master” teacher for a lesson and then went back to their own classrooms to teach the lesson. The teachers asked the same questions that the master teacher asked; however, the lessons didn’t go as hoped. The teachers were not asking questions based on what was happening in their own classrooms; they were asking questions based on what had happened in the other classroom.

I love reading blog posts and learning from so many mathematics educators. They give me ideas that I wouldn’t have on my own. In fact, as my classroom moved toward more asking and less telling, I used to say that my most important work happened before the lesson, collaborating with other teachers and deciding what questions to ask. I’ve decided otherwise, though. My most important work happens in the moment, not just asking, but also listening. And then, if needed, adjusting what I planned to ask next based on the responses of the students in my care. And so the journey will always continue …

 
4 Comments

Posted by on November 15, 2016 in Geometry, Rigid Motions

 

Tags: , , , ,

MP6 – Defining Terms

How do you provide your students the opportunity to attend to precision?

1-screen-shot-2016-10-25-at-1-18-52-pmWriting sound definitions is a good practice for students, making all of us pay close attention to what something is and is not.

I’ve learned from Jessica Murk about Bongard Problems, which give students practice creating sound definitions based on what something is and is not.

1_1 Screen Shot 2016-11-14 at 8.30.14 AM.png

What can you say about every figure on the left of the page that is not true about every figure on the right side of the page? (Bongard Problem #16)

Last year when I asked students to define circle, I found it hard to select and sequence the responses that would best contribute to a whole class discussion without taking too much class time.

2-screen-shot-2016-10-25-at-1-16-23-pm3-screen-shot-2016-10-25-at-1-16-38-pm4-screen-shot-2016-10-25-at-1-16-48-pm

I remember reading Dylan Wiliam’s suggestion in Embedding Formative Assessment (chapter 6, page 147) to have students give feedback to student responses that aren’t from their own class. I think it’s still helpful for students to spend time writing their own definition, and possibly trying to break a partner’s definition, but I wonder whether using some of last year’s responses to drive a whole class discussion this year might be helpful.

  • a shape with no corners
  • A circle is a shape that is equal distance from the center.
  • a round shape whose angles add up to 360 degrees
  • A circle is a two-dimensional shape, that has an infinite amount of lines of symmetry, and a total of 360 degrees.
  • A 2-d figure where all the points from the center to the circumference are equidistant.

 

We recently discussed trapezoids.

Based on the diagram, how would you define trapezoid?

5 Trapezoid.png

Does how you define trapezoid depend on how you construct it?

Can you construct a dynamic quadrilateral with exactly one pair of parallel sides?

Trapezoid.gif

And so the #AskDontTell journey continues …

 
Leave a comment

Posted by on November 14, 2016 in Circles, Geometry, Polygons

 

Tags: , , , , , ,

Introduction to Curve Sketching, Part 2

While students were working on this antiderivative from a Desmos Activity called Sketchy Derivatives, I heard several students ask how they know where to place the y-intercept.

28 Screenshot 2016-09-23 14.03.26.png

We didn’t have time to answer that question during the first lesson of the unit, but we started with it during the second lesson.

29 Screenshot 2016-09-23 14.05.14.png

Should the cubic start decreasing or increasing? How do you know?

[Yes, I do know that I can anonymize the names. However, by the time I thought of that, these two responses were no longer adjacent. It would be nice to be able to drag the responses to different locations in case you want to compare/contrast several specific responses at the same time. ☺]

Then we looked at these.

30 Screenshot 2016-09-23 14.06.45.png

They all have the same basic shape. Is one more right than the other?

Students began to think about all of the curves that have y’=2x, and so while they know something about the importance of the constant, one won’t be more right than the other until we learn about area under the curve.

I had the Second Derivative Grapher from Calculus Nspired queued during the previous class, but I decided it would be better for students to “do” instead of “discuss” for the last few minutes of class. We looked at it next to make the relationship between the second derivative and concavity of the original function more clear.

32 Second Derivative Grapher 1.gif

33 Second Derivative Grapher 2.gif

Students put all of this information together to begin to analyze a function given the graph of its derivative. The results of our formative assessments seem to indicate that students have a better understanding of the relationship between f-f’-f” than they have in the past. I’ll know for sure later today, though, after their summative assessment. And so the journey continues …

 
 

Tags: , , , , ,

Introduction to Curve Sketching, Part 1

Learning Intentions:

Level 4:

I can use the graph of the derivative to sketch a graph of the original function.

Level 3:

I can use the graph of the original function to deduce information about the first and second derivatives.

I can use the graph of the derivative to deduce information about the second derivative and the original function.

I can use the graph of the second derivative to deduce information about the first derivative and the original function.

Level 2:

I can determine when a function is concave up or concave down and where it has points of inflection.

Level 1:

I can determine when a function is increasing or decreasing and where it has maxima and minima.

We were on the first day of a new unit. I included two questions on the opener to ensure students know what we mean by increasing/decreasing and concave up/concave down intervals. As expected students were familiar with increasing/decreasing and not so familiar with concave up/concave down.

Based on the results, we discussed what it means to be concave up and concave down. Someone asked how we would be able to tell for sure where the graph changes concavity, which we get to learn during the unit.

We started the lesson with a few Quick Polls for students to determine which graph was the derivative, given the graphs of a function and its derivative. The polls were based on Graphical Derivatives from Calculus Nspired. I sent the poll, asked students to answer individually, stopped the poll, asked students to explain their thinking to a partner. If needed, I sent the poll again to see whether they wanted to change their response after talking with their partner. I had 6 polls prepared. I sent 3.

I listened while students shared their thinking. I selected three conversations for the whole class.

  1. A student who knew which was which based on the power rule, which she learned during the last unit.
  2. A student who knew that the slope of the tangent line at the minimum of the parabola should be zero, which is the value of the line at z=0.
  3. A student who noticed that the line (derivative) was negative (below the x-axis) when the parabola was decreasing and positive (above the x-axis) when the parabola was increasing.

Again, as I listened to the pairs talking, I selected a few students to share their thinking with the whole class.

  1. The first student who shared used the maximum and minima to determine which had to be the derivative, since the derivative is zero at those x-values.
  2. The second student thought about what the slope of the tangent line would be at certain x-values and whether the y-values of the other function complied.
  3. A third student volunteered a fourth student to discuss her thinking: she noted that the graph of the function (b) changed concavity at the max/min of the derivative (b).

14 Screen Shot 2016-09-24 at 6.53.43 PM.png

 

After students talked, I sent the poll again to see if anyone was convinced otherwise.

17 Screenshot 2016-09-23 13.09.24.png

Two students briefly discussed how they used increasing/decreasing and concavity to determine the derivative.

18 Screen Shot 2016-09-24 at 6.59.06 PM.png

Next we began to solidify what increasing/decreasing and concave up/concave down intervals look like using Derivative Analysis from Calculus Nspired.

I asked students to notice and note.

Where is the function increasing? Where is it decreasing?
What is the relationship between the slope of the tangent line and where the function is increasing and decreasing?

19 Derivative Analysis 1.gif

19 Derivative Analysis 2.gif

Where is the function concave up? Where is it concave down?

19 Derivative Analysis 3.gif

What does the tangent line have to do with where the function is concave up and concave down?

19 Derivative Analysis 4.gif

Can you look at a graph and estimate intervals of concavity?

19 Derivative Analysis 5.gif

I was able to see what students were noting on paper and hear what they were noting in our conversation, but I didn’t send any polls during this part of the lesson.

Next we looked at Derivative Grapher from Calculus Nspired.

21 Derivative Grapher.gif

We changed the graph to f(x)=cos(x). We already know the derivative is f’(x)=sin(x). What if we were only given the graph of the derivative? How could we use that graph to determine information about the original function?

22 09-24-2016 Image006.jpg

23 Screenshot 2016-09-23 14.00.39.png

I had more for us to discuss as a whole class, but I wanted to know what they had learned before the class ended. I used a Desmos Activity called Sketchy Derivatives to see what students had learned – given a function, sketch its derivative; and given a derivative, sketch an antiderivative. The original activity was from Michael Fenton. I modified it to go back and forth between sketching the derivative and antiderivative instead of doing all derivatives first and all antiderivatives second, and I added a few questions so that students could begin to clarify their thinking using words.

We spent the last minutes of class looking at an overlay of some of their sketches.

Could you figure out exactly where to sketch the horizontal line?

24 Screenshot 2016-09-23 14.02.36.png

Most students have the vertex of the parabola near the right x-coordinate. Should the antiderivative be concave up or concave down?

25 Screenshot 2016-09-23 13.56.00.png

Most students have the derivative crossing the x-axis near the correct location.

26 Screenshot 2016-09-23 14.03.01.png

The bell rang. Another #lessonclose failure. But thankfully, there are do-overs as the journey continues …

 

 
1 Comment

Posted by on October 17, 2016 in Applications of Differentiation, Calculus

 

Tags: , , , , ,

MP6 – Mapping a Parallelogram Onto Itself

How do you provide your students the opportunity to practice I can attend to precision?

Jill and I have worked on a leveled learning progression for MP6:

Level 4:

I can distinguish between necessary and sufficient language for definitions, conjectures, and conclusions.

Level 3:
I can attend to precision.

Level 2:
I can communicate my reasoning using proper mathematical vocabulary and symbols, and I can express my solution with units.

Level 1:
I can write in complete mathematical sentences using equality and inequality signs appropriately and consistently.

CCSS G-CO 3: Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

We continued working on our learning intention: I can map a figure onto itself using transformations.

Perform and describe a [sequence of] transformation[s] that will map parallelogram ABCD onto itself.

21 09-21-2016 Image009.jpg

22-screenshot-2016-08-31-10-01-1823-screenshot-2016-08-31-10-01-25

This task also requires students to practice I can look for and make use of structure. What auxiliary objects will be helpful in mapping the parallelogram onto itself?

The student who shared her work drew the diagonals of the parallelogram so that she could use the intersection of the diagonals as the center of rotation.

24 Screenshot 2016-08-31 09.13.49.png

Then she rotated the parallelogram 180˚ about that point.

25 Screenshot 2016-08-31 09.13.54.png

Could you use only reflections to carry a parallelogram onto itself?

You can. How can you describe the sequence of reflections to carry the parallelogram onto itself?

26 09-21-2016 Image001.jpg

How else could you carry a parallelogram onto itself?

 
Leave a comment

Posted by on September 22, 2016 in Geometry, Rigid Motions

 

Tags: , , , , ,

MP6 – Mapping a Figure Onto Itself

How do you provide your students the opportunity to practice I can attend to precision?

Jill and I have worked on a leveled learning progression for MP6:

Level 4:

I can distinguish between necessary and sufficient language for definitions, conjectures, and conclusions.

Level 3:
I can attend to precision.

Level 2:
I can communicate my reasoning using proper mathematical vocabulary and symbols, and I can express my solution with units.

Level 1:
I can write in complete mathematical sentences using equality and inequality signs appropriately and consistently.

CCSS G-CO 3:

Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Our learning intention for the day was I can map a figure onto itself using transformations.

Performing a [sequence of] transformation[s] that will map rectangle ABCD onto itself is not the same thing as describing a [sequence of] transformation[s].

1 Rectangle 1.gif

2 Rectangle 2.gif

We practiced both, but we focused on describing.

3-screenshot-2016-08-29-09-03-264-screenshot-2016-08-29-09-03-34

I asked the student who listed several steps to share his work.

  1. rotate rectangle 180˚ about point A
  2. translate rectangle A’B’C’D’ right so that points A’ and B line up as points B’ and A. [What vector are you using?]
  3. Reflect rectangle A”B”C”D” onto rectangle ABCD to get it to reflect onto itself. [About what line are you reflecting?]

5 Screenshot 2016-08-29 09.14.58.png

What if we want to carry rectangle ABCD onto rectangle CDAB? How is this task different from just carrying rectangle ABCD onto itself?

6-screenshot-2016-08-29-09-03-507-screenshot-2016-08-29-09-03-58

What about mapping a regular pentagon onto itself?

8 09-21-2016 Image008.jpg

Many students suggested using a single rotation, but they didn’t note the center of rotation. How could you find the center of rotation for a single rotation to map the pentagon onto itself?

9 Screenshot 2016-08-30 17.08.44.png

This student used the intersection of the perpendicular bisectors to find the center of rotation, but didn’t know what angle to use for the rotation. How would you find an angle of rotation that would work?

10 Screenshot 2016-08-31 09.10.36.png

What can you do other than a single rotation?

11 Screenshot 2016-08-30 17.09.12.png

12 Screenshot 2016-08-30 17.09.04.png

This student reflected the pentagon about the perpendicular bisectors of one of the side of the pentagon.

13 Screenshot 2016-08-31 09.10.59.png

The descriptions students gave made it obvious that we needed more work on describing. The next day, we took some of the descriptions and critiqued them. Which students have attended to precision?

14-screenshot-2016-08-31-10-01-39

15-screenshot-2016-08-31-10-01-46

It’s good work to distinguish precision from knowing what someone means as we learn to attend to precision. And so the journey continues …

 
Leave a comment

Posted by on September 21, 2016 in Geometry, Rigid Motions

 

Tags: , , , , ,

Squares on the Coordinate Grid

I’ve written before about Squares on the Coordinate Grid, an Illustrative Mathematics task using coordinate geometry.

CCSS-M G-GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

How do you provide opportunities for your students to practice I can look for and make use of structure?

SMP7 #LL2LU Gough-Wilson

How do you draw a square with an area of 2 on the coordinate grid?

It helped some students to start by thinking about what 2 square units looks like, which was easier to see in a non-special rectangle.

1 2015-03-16 09.28.06.jpg

What’s true about the side length of a square with an area of 2?

2 2015-03-16 09.48.23.jpg

How could we arrange 2 square units into a square?

3 2015-03-16 09.41.51.jpg

How do you know the figure is a square? Is it enough for all four sides to be square root of 2?

4 Screen Shot 2015-03-20 at 2.14.53 PM.png

CC made his thinking visible by reflecting on his learning after class:

5 Screen Shot 2016-09-20 at 1.18.28 PM.png

6 Screen Shot 2016-09-20 at 1.39.10 PM.png

“Now drawing the square root of two exactly on paper is nearly impossible unless you know how to use right triangles.”

 
Leave a comment

Posted by on September 21, 2016 in Coordinate Geometry, Geometry

 

Tags: ,