Circles and Squares

We started our performance assessment task day for Geometric Measure & Dimension with Circles and Squares, a Mathematics Assessment Project task.

00 Screen Shot 2015-09-20 at 5.49.03 PM

01 Screen Shot 2015-09-20 at 5.43.53 PM 02 Screen Shot 2015-09-20 at 5.44.04 PM 03 Screen Shot 2015-09-20 at 5.44.18 PM 04 Screen Shot 2015-09-20 at 5.44.32 PM

Several students wondered about the ratios of the areas of the figures.

Without doing any calculations, what is the ratio of the area of the smaller square to the larger square?

05 Screen Shot 2015-09-20 at 5.44.51 PM 06 Screen Shot 2015-09-20 at 5.44.58 PM

Now practice look for and make use of structure.

Screen Shot 2015-09-20 at 5.51.58 PM

We did the usual and purposeful individual work then team work before sharing with the whole class.

I loved watching students look for and make use of structure to make sense of the relationships in the diagram.

7 2015-04-23 09.21.14 8 2015-04-23 09.22.16 9 2015-04-23 09.23.32 10 2015-04-23 09.24.00 11 2015-04-23 09.24.37 12 2015-04-23 09.25.17 13 2015-04-23 09.26.00 15 2015-04-23 09.32.55 14 2015-04-23 09.27.40 16 2015-04-23 09.33.57 17 2015-04-23 09.35.04 18 2015-04-23 09.38.45

And then successfully determining the ratio … even though there is always room for more attention to precision.

19 Screen Shot 2015-09-20 at 5.45.08 PM


Tags: , , ,

Triangles and Squares

As we continued work on Geometric Measure & Dimension Performance Assessment Tasks, I tried to give students some choice.

Everyone started with Some Really Obscure Geometry Problem.

1 Screen Shot 2015-09-21 at 5.52.51 AM

Guesses for region A were 32-50, with the median at 40%.

2 Screen Shot 2015-09-21 at 5.42.41 AM

Guesses for region B were 5-18, with the median at 10%.

3 Screen Shot 2015-09-21 at 5.46.20 AM

Guesses for region C were 12-23, with the median at 20%.

4 Screen Shot 2015-09-21 at 5.46.55 AM

Guesses for region D were 25-38, with the median at 30%.

5 Screen Shot 2015-09-21 at 5.47.30 AM

Students then chose whether to try the square task or a Triangles task that used to be on the Mathematics Assessment Project site but doesn’t seem to be anymore.

6 Screen Shot 2015-09-21 at 5.51.13 AM

Students specifically practiced look for and make use of structure.

Screen Shot 2015-09-20 at 5.51.58 PM

And show your work.

6.5 Screen Shot 2015-09-21 at 5.56.33 AM

7 2015-04-27 09.16.188 2015-04-27 09.17.57 9 2015-04-27 09.28.24 10 2015-04-27 12.49.36 11 Screen Shot 2015-09-21 at 5.55.18 AM 12 2015-04-27 09.14.56 13 2015-04-27 12.50.04 14 2015-04-27 12.50.08

We don’t always “finish” tasks like these. I wonder how much that matters.

Is it enough to begin to make your thinking visible to the readers of your work?

1 Comment

Posted by on September 21, 2015 in Geometric Measure & Dimension, Geometry


Tags: ,

Angle Bisection and Midpoints of Line Segments, Take Two

Last year’s lesson using the Illustrative Mathematics task Angle Bisection and Midpoints of Line Segments had plenty of room for improvement. This year, students left with a better understanding of proof and giving feedback on proof.

Our goal? SMP3: I can construct a viable argument and critique the reasoning of others.

0 Screen Shot 2015-09-19 at 3.56.34 PM

Students started by reading through both parts of the proof, noticing and wondering.

1 screen-shot-2014-11-17-at-10-55-14-am

2 Screenshot 2015-09-15 09.41.47

I’ll admit, I really wanted someone to notice that parts a and b were converses. (I didn’t expect them to use that language … I was just looking for anything about the parts being “opposite”.) I wasn’t ready to tell them, so I specifically asked, “what is the difference between parts a and b”.

3 Screenshot 2015-09-15 09.41.39

In triangle a thhey already give you the midpoint of line QR and asking you to draw the angle bisector, but in triangle b they are giving you the angle bisector and are asking you to find the midpoint of line QR.        1

In part a, you’re trying to find the angle bisector from the midpoint, but in part b, you’re trying to find the midpoint using the angle bisector. So they’re basically the opposite of each other, but you have the same point and the same line. They were just found in different ways.  1

Part a starts of with finding the midpoint to segment QR and then creates a line from P to go through the midpoint while part b starts with an angle bisector PS then goes to see if it intersects the midpoint to of segment QR.       1

in part a your contructing a midpoint, in part b you are constructing a bisector         1

In part a you are justifying that PM is a bisector of QPR, but in part b you are justifying that PS meets QR at its midpoint.         1

The difference is that part a to show that the bisector will go through the midpoint, while part b is asking to show that the bisector does go through the midpoint rather than just some random point.       1

In part A the midpoint is labeled M and in part B the midpoint is labeled S, but it is the same point. Also part A and part B make the same image, but the just switch the order they made the image. like finding the midpoint first then the bisector, vice versa    1

Students spent a few minutes creating an argument for part a. Then we looked at some of the student work from last year to critique the arguments.

In Embedding Formative Assessment, Dylan Wiliam suggests that students learning how to give feedback should start with anonymous student work … and eventually move towards student work from peers in the same class. This seemed to work well for this task. Additionally, I had the opportunity to purposefully select and sequence the work for giving feedback ahead of time, which gave us more time for learning during class.

My geometry students are 1:1 this year with MacBook Airs, and so I sent a PDF of the student work samples through TI-Nspire Navigator for Networked Computers, which gave them an up-close look at the student work instead of my having to stand at the copy machine for a while or students trying to decipher from it only being displayed on the board at the front of the room.

We looked at one student work sample at a time using Think-Pair-Share to make student thinking visible. What feedback would you give this student?

4 screen-shot-2014-11-17-at-11-01-08-am

M is the same distance from Q and R, but points on the angle bisector are the same distance from the sides of the angle. How do you know M is the same distance from ray PQ as it is from ray PR? We represent distance from a point to a line as the length of the segment perpendicular from the point to the line.

5 screen-shot-2014-11-17-at-11-01-32-am

What is a perpendicular bisector of an angle?

6 screen-shot-2014-09-22-at-9-37-39-am

What is the difference in saying segment QR is a perpendicular bisector of ray PM and saying ray PM is a perpendicular bisector of segment PM?

Before we looked at the next student work sample, I asked students to practice look for and make use of structure, asking what they saw when segment QR was drawn.

8 Screenshot 2015-09-17 09.12.21

An angle bisector.

A midpoint.


How many triangles?

3 triangles.

What kind of triangles?

The big one is isosceles.

What do you know about isosceles triangles?

They have two congruent angles.

9 Screenshot 2015-09-17 09.12.11

Eventually we showed that the two triangles were congruent using SAS.

10 Screenshot 2015-09-17 09.12.04 11 Screenshot 2015-09-17 09.11.56 12 Screenshot 2015-09-17 09.11.33

Then we looked at another student work sample.

7 screen-shot-2014-11-17-at-11-29-10-am

This student noted that the triangle is isosceles, but jumped from one pair of corresponding congruent sides to the angle bisector.

13 screen-shot-2014-11-17-at-11-03-48-am

And one other student work sample, where the student noted that the triangles were congruent, but didn’t give a reason why.

Students looked at part b for a few minutes. Then we looked at one last student work sample. What do you wonder about this argument?

14 Screen Shot 2015-09-19 at 4.33.11 PM

Does S have to be the midpoint?

After working for a few more minutes, students gave each other feedback and then revised their argument based on the feedback.

15 2015-09-17 09.29.19 16 2015-09-17 09.25.01

Are we going to look at a correct argument for this?

Will you check mine to be sure that it is right?

Last year, students didn’t care so much whether their argument was correct, nor did they care about seeing a “viable argument”. Somehow, figuring out how to improve some of the arguments for part a got them more interested in their argument for part b.

We plan to look at the following five arguments tomorrow.

With what do you agree?
With what do you disagree?

17 Screen Shot 2015-09-20 at 3.58.28 PM18 Screen Shot 2015-09-20 at 5.03.26 PM19 2015-09-20 15.54.1320 2015-09-20 15.55.42Screen Shot 2015-09-21 at 7.51.50 AM

And so the journey continues … thankful for do-overs from one year to the next.


Posted by on September 20, 2015 in Angles & Triangles, Geometry, Tools of Geometry


Tags: , ,

Popcorn Picker + #ShowYourWork

Towards the end of our geometry course last year, we focused on students being able to say:

I can show my work.

How often do our students understand what we mean when we say, “show your work”?

Jill Gough’s Show Your Work learning progression has been an important addition to our classroom.

Level 4: I can show more than one way to find a solution to the problem.

Level 3: I can describe or illustrate how I arrived at a solution in a way that the reader understands without talking to me.

Level 2: I can find a correct solution to the problem.

Level 1: I can ask questions to help me work toward a solution to the problem.

A correct solution isn’t enough … we want the reader (and sometimes grader) to understand our solution without having to ask any questions.

We continue to use Dan Meyer’s Popcorn Picker 3-Act, even though I keep thinking we shouldn’t need to do this in high school. The Quick Poll results, however, provide evidence that we aren’t wasting our time.

1 09-11-2015 Image001

2 Screen Shot 2015-04-27 at 10.01.47 AM

You can read more about how the 3-Act lesson played out in last year’s post.

3 2015-04-27 09.16.40-1 4 2015-04-27 09.18.08

My purpose for posting about the lesson again is to consider the value added when we ask students to practice “show your work” and provide students the opportunity to give other students feedback on what they’ve shown … when we provide students an opportunity to practice SMP3, “I can construct a viable argument and critique the reasoning of others”.

We used the “I like …, I wish …, What if (or I wonder) …” protocol for providing feedback.

5 2015-04-27 12.50.346 2015-04-27 12.50.39 7 2015-04-27 12.50.45 8 2015-04-27 12.50.51 9 2015-04-27 12.50.58

Kato Nims recently posted Illuminating Success and Growth, where she shares her students’ first attempts at giving feedback to each other this year. She writes, “It is clear to me that as our work together continues that it will be important for me to model how to give effective feedback so that we can all benefit from the unique perspectives that are represented in our classroom.”

Some of the feedback that my students gave each other is helpful, but more of it is not. How do we teach students to give productive feedback to each other? Would my giving feedback on the feedback have been helpful? At what point have we spent too much time on this activity and need to call it “done”? But then how often am I so focused on teaching content that I neglect to provide students the opportunity to grow as learners? Isn’t learning how to give feedback important for all of us? The tasks we choose are so important … which ones will further both our content and our practice learning goals?

And so the journey continues … with many more questions than answers.


Tags: , ,

Placing a Fire Hydrant

Placing a Fire Hydrant

We’ve used the Illustrative Mathematics task Placing a Fire Hydrant for several years now. Each year, the task plays out a bit differently because of the questions that the students ask and the mathematics that students notice. Which is, honestly, why I continue to teach.

I set up our work for the day as practicing I can make sense of problems and persevere in solving them and also I can attend to precision. If you don’t know how to start at Level 3, use Levels 1 and 2 to help you get there.



In an effort not to articulate all of the requirements ahead of time, I simply asked: where would you place a fire hydrant to serve buildings A, B, and C. Students dropped a point at the location they thought best.

It was then obvious from the students’ choices that they thought equidistant was important.

1 Screenshot 2015-09-04 09.10.09

This year I didn’t put out tools that students might choose to use. Instead, I set the timer for them to work alone on paper for a few minutes and told them to ask for what they needed. Before I could get from the front of the room to the back, almost every hand was raised to request either a ruler or a protractor. (No one asked for a compass this year. Last year, when I had them out on the tables, lots of students used them.)

2 2015-09-04 09.17.193 2015-09-04 09.17.43 4 Screen Shot 2015-09-08 at 5.24.22 AM

I gave students a few more minutes to work individually with the option, this time, of working with the TI-Nspire software to show their thinking. And at the end of that, I added a few more minutes, asking students to focus on how they could justify that their solution always works. Then I gave them a few minutes to discuss their thinking with a partner.

8 Screen Shot 2015-09-08 at 5.36.14 AM9 Screen Shot 2015-09-08 at 5.37.05 AM

I watched (or monitored, according to Smith & Stein’s 5 Practices) while they worked using the Class Capture feature of TI-Nspire Navigator. During that time I also selected and sequenced for our whole class discussion. I wanted some of the vocabulary associated with special segments in triangles to come out of our discussion, so I didn’t immediately start with the correct solution.

5 Screenshot 2015-09-04 09.24.48

6 Screenshot 2015-09-04 09.25.29 7 Screenshot 2015-09-04 09.25.55

We started with Autumn, who had constructed the midpoints of the sides and then created both a midsegment of the triangle and some medians of the triangle. She could tell that the intersection of the midsegment and medians was “too high”.

10 Screen Shot 2015-09-08 at 5.39.23 AM

C chimed in that she had constructed lots of midsegments. In fact, she had created several midsegment triangles, one inside the other.

11 Screenshot 2015-09-04 09.34.36

Next we went to Addison, who not only had created all three medians of the triangle but had also measured to show that the medians weren’t the answer.

12 Screenshot 2015-09-04 09.35.19

That led to S, who had been trying to figure out when the intersection of the medians would be a good location for the fire hydrant.

13 Screenshot 2015-09-04 09.38.50

Arienne told us about her approach next. She had placed a point inside of the buildings, measured from the point to each building, and she was moving the point around to a location that would be equidistant from the buildings.

14 Screenshot 2015-09-04 09.39.31

Reagan talked with us about her solution next. She had constructed the perpendicular bisectors and measured from their intersection to each vertex to show that it always worked.

15 Screenshot 2015-09-04 09.40.5416 Screenshot 2015-09-04 09.42.03

I wonder what that point has to do with the vertices. What do you see in the diagram? (I was expecting students to “see” a circle. But they didn’t. They saw a triangular prism.) I wasn’t ready to show them the circle, though. How could I help make the circle visible without telling them? A new question came to me: What if we had a 4th building? Where could we place the building so that the fire hydrant served it, too?

I quickly collected Reagan’s file and sent it out to all of the students so that they could create a 4th building that was the same distance from the fire hydrant as A, B, and C.

While they were working, Janie said, “I have a 4th building the same distance, but how do I place it so that it always works?” (On the inside, I was thrilled that Janie asked this question. It is exciting for students to realize this early on in the course that we are about generalizing and proving so that something always works and not just for one case.)

17 Screenshot 2015-09-04 09.47.42

How do you place the 4th building so that it always works? What is significant about the location of the 3 buildings and the fire hydrant?

Sofia volunteered that her 4th building always works. (I have to admit that I was skeptical, but I made her the Live Presenter and asked how she made it.) Sofia had rotated building C about the fire hydrant to get d. (How many degrees? Does the number of degrees matter? Would rotating always work? Why would it work?) She rotated C again to get a 5th building between A and B. What is significant about the location of the 5 buildings and the fire hydrant?

18 Screenshot 2015-09-04 09.48.0119 Screenshot 2015-09-04 09.49.50 20 Screenshot 2015-09-04 09.53.24

And then they saw it. It wasn’t yet pictured, but it had become visible. All of the buildings would form a circle around the fire hydrant! The fire hydrant is the circumcenter of ∆ABC. The circle is circumscribed about the triangle.

21 Screenshot 2015-09-04 09.53.35

And so the journey continues … every once in a while finding a more beautiful question.


Tags: , , , , ,

Placing a Fire Hydrant (2014)

I gave a talk at ASSM back in April entitled The Slow Math Movement. The following is an excerpt from that talk that describes how the Illustrative Mathematics Placing a Fire Hydrant task played out in my classroom last year:

Towards the beginning of our geometry course, we give students a task from Illustrative Mathematics called Placing a Fire Hydrant. Where would you place a fire hydrant to serve all three buildings?

6 Screen Shot 2014-09-10 at 9.56.37 AM

Through a Quick Poll, students drop a point at the location they think is best. Then we introduce the requirement that the fire hydrant should be equidistant from all three buildings.

7 Screen Shot 2014-09-10 at 9.56.17 AM

They started on paper, using rulers, folding, and compasses.

8 photo 1

Several of them realized that if they could find the circle that contained all three locations,

9 photo 2

the center would be equidistant (and thus the location of the fire hydrant).

10 photo 4

However, their methods for finding a circle to contain all three points were not very precise

11 photo 3

(which meant they didn’t already know everything they needed to know about triangle centers).

12 photo 6

Next they moved to technology. I watched while they worked using the Class Capture feature of our technology, and using what I learned from Smith & Stein’s 5 Practices for Orchestrating Productive Mathematics Discussions to monitor, select, and sequence the student work for our whole class discussion.

13 Screen Shot 2014-09-08 at 9.19.11 AM

My students didn’t come into this lesson knowing the vocabulary associated with special segments in triangles, so I purposefully included some incorrect solutions for placing the fire hydrant equidistant from the buildings to bring out that new vocabulary.

Kolton had constructed the midpoints of the sides of the triangle. I made him the Live Presenter so that he could discuss his solution and so that students could learn what a median of the triangle was. His measurements showed that his solution didn’t always work,

14 Screen Shot 2014-09-08 at 9.25.26 AM

but the dynamic feature of our software let him move the buildings around and begin to consider when the intersection of the medians would be equidistant from the sides of the building.

15 Screen Shot 2014-09-08 at 9.26.49 AM

Chaney had constructed a midsegment of the triangle, and so we looked at hers next to learn that new term.

16 Screen Shot 2014-09-08 at 9.27.43 AM

Jameria had constructed the three midsegments of the triangle, creating a midsegment triangle. She was able to tell from her measurements that her solution didn’t always work, either, but we looked at anyway, and I told students that we would learn more about the midsegment triangle later in the course.

17 Screen Shot 2014-09-08 at 9.28.45 AM

We moved next to Sawyer, who recognized that the correct placement of the fire hydrant should be the center of a circle that contained all three buildings, but we could see from his work that he hadn’t yet figured out how to get a circle through all three buildings.

18 Screen Shot 2014-09-08 at 9.29.52 AM

Quinn had fashioned a circle through the three points, but still hadn’t actually constructed it.

19 Screen Shot 2014-09-08 at 9.30.32 AM

Caroline had constructed the perpendicular bisectors of each side of the triangle. She had measured from their intersection, the circumcenter, to each building to show that they were equidistant.

20 Screen Shot 2014-09-08 at 9.32.24 AM

As the Live Presenter, she started moving the buildings around to show that her solution always worked.

21 Screen Shot 2014-09-08 at 9.33.02 AM

Then we asked her to construct the circumscribed circle to emphasize that the intersection of the perpendicular bisectors is the circumcenter.

22 Screen Shot 2014-09-08 at 9.33.45 AM

As Caroline continued to move around the buildings, Gabe asked, “Why would we put the fire hydrant there?” Caroline stopped, and we took a good look at the setup.

23 Screen Shot 2014-09-08 at 9.43.11 AM

She moved the buildings again, to exaggerate how ridiculous it would be to place a fire hydrant that far away. Our dynamic technology made the students realize that the circumcenter isn’t always the most efficient place for the fire hydrant, even if it is equidistant from the three buildings. And so we began to explore when it makes sense to put the fire hydrant equidistant from the buildings and when it no longer makes sense.

24 Screen Shot 2014-09-08 at 9.43.43 AM

Take just a moment to contrast the Fire Hydrant task with how I used to teach special segments in triangles. Which one of these is the “Fast Math” option? Which one furthers the Slow Math Movement?


In his book The Falconer, Grant Licthman says, Questions are waypoints on the path of wisdom. Each question leads to one or more new questions or answers. Sometimes answers are dead ends; they don’t lead anywhere. Questions are never dead ends. Every question has the inherent potential to lead to a new level of discovery, understanding, or creation, levels that can range from the trivial to the sublime. (Lichtman, 35 pag.)

The technology that we use provide the impetus for students to ask questions, which leads to more questions and some answers, from and by the students. I get to watch and listen and push and probe my students by asking more questions.

What can you do this week to further The Slow Math Movement?

[Cross posted on The Slow Math Movement]


Posted by on September 9, 2015 in Angles & Triangles, Geometry, Tools of Geometry


Tags: , , , , ,

Reflected Triangles + #ShowYourWork

I’ve used the Illustrative Mathematics task Reflected Triangles for several years now. This year students practiced “Show Your Work” (from Jill Gough) along with coming up with a correct solution.

Level 4: I can show more than one way to find a solution to the problem.

Level 3: I can describe or illustrate how I arrived at a solution in a way that the reader understands without talking to me.

Level 2: I can find a correct solution to the problem.

Level 1: I can ask questions to help me work toward a solution to the problem

Which of the directions can you follow exactly to construct the line of reflection? Are there any that need clarification?

1 Screen Shot 2015-09-07 at 11.54.39 AM

2 Screen Shot 2015-09-07 at 11.54.57 AM 3 Screen Shot 2015-09-07 at 11.53.18 AM

Students wrote first and then constructed their lines of reflection. I used the Class Capture feature of TI-Nspire Navigator to watch. We’ve spent longer on this task in the past, but this year, I only had about 5 minutes for a whole class discussion. Whose work would you select for the whole class to see?

4 Screenshot 2015-08-27 09.54.16

We started with Kaelon’s construction.

5 Screenshot 2015-08-27 09.57.21

How is Holly’s construction different? Can you tell what Holly did?

6 Screenshot 2015-08-27 09.57.12

How is Phillip’s different? Can you tell what he did?

7 Screenshot 2015-08-27 09.57.06

We are well on our way towards learning how to “describe or illustrate a solution in a way that the reader understands without talking to me”, as the journey continues …


Posted by on September 8, 2015 in Angles & Triangles, Geometry, Rigid Motions


Tags: , , ,


Get every new post delivered to your Inbox.

Join 2,102 other followers