Author Archives: jwilson828

What I Learned Today: Scale Drawings and Maps

I asked my 15-year-old what she learned today at school. She paused for a moment and then answered my question by asking me what I learned at school today.

It took me a while to think about what I had learned [which will make me more patient when I ask her the question again tomorrow], and then I remembered and shared with her:

We are working with some teachers who are using the Illustrative Mathematics 6–8 Math curriculum. The 7th grade teachers are in Unit 1, Scale Drawings. They are working with Scale Drawings and Maps. Today I learned to look more closely at the scale given for a map.

Look at the following for a moment. What’s the same? What’s different?





The last two are from Illustrative Mathematics, which you can download for free at

What’s different about the scales on the last two?

Attend to precision, MP6, says, “Mathematically proficient students try to communicate precisely to others. … They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately.”

I’m not sure that we would have noticed a difference, except that we were trying to find some assessment items from another source and saw that many aligned to 7.G.A.1 included a scale in the form of “1 cm = 100 miles”. I’ve looked at lots of maps and I never noticed the incongruity of saying that 1 cm equals 100 miles. We don’t really mean that 1 cm equals 100 miles, right? Not in the same sense that we say 4 quarters equals $1 or 3+4=7. Is there any wonder that our students misuse the equal sign?

And so the journey continues, grateful for the authors of this curriculum who make me pay closer attention to attending to precision and grateful for my daughter who makes me think and share about what I’m learning, too …


Tags: , , , , , ,

Blending Technology with Paper and Pencil

My geometry class is 1:1 this year; each student has her own MacBook Air. Students share responses to questions digitally in class using TI-Nspire Navigator for Networked Computers. Students explore mathematics using TI-Nspire dynamic graphs and geometry software. Students explore mathematics and share responses digitally using Demos Activity Builder. We use Canvas, an online learning management system, for assignments. We use Google Drive for sharing electronic documents with each other, and we use MathXL, online homework with built-in learning help, to practice mathematics. What place does pencil and paper have in my students’ learning and understanding of mathematics?

Even though many of the tasks that my students do for geometry take place digitally, I am convinced that pencil and paper plays an important role in how much mathematics my students not only learn but also remember. In a Wall Street Journal article, “Can Handwriting Make You Smarter?“, Robert Lee Hotz reports that students who take notes by hand usually outperform students who type notes when assessed more than one day after the class period. Students who type notes quickly type everything the professor says, but students who handwrite notes have to process the information while they are hearing it to select what is important to remember (Hotz 2016).

Hotz cites the work of Mueller and Oppenheimer published in Pyschological Science. Their research studies showed that students who took notes by hand performed better on conceptual questions than those who took notes on a laptop. Students performed about the same on factual questions. Their hypothesis for why is that students who take notes by hand choose which information is important to include in their notes, and so they are able to study “more efficiently” than those who are reviewing an entire typed lecture (Mueller and Oppenheimer 2014). Note: These studies are on college students; I have found little research on grade school students.

For several years now, my students and I have been learning how to learn mathematics using the Standards for Mathematical Practice. MP8, “look for and express regularity in repeated reasoning”, has pushed me to think about having students record what they see instead of just noticing and discussing it.

SMP8 #LL2LU Gough-Wilson

One of the ways that I’ve learned to talk about “look for and express regularity in repeated reasoning” is to ask students to notice what changes and what stays the same as we take a dynamic action on a geometric figure. Consider a recent learning episode from my classroom.

Students were told that our learning intention was “I can look for and express regularity in repeating reasoning”. The content was conceptual development of the equation of a circle in a coordinate plane using the Pythagorean Theorem. I did not share that specific content with students up front, however, because I wanted it to be revealed as the lesson progressed. I showed them a dynamic right triangle in the coordinate plane.

Notice & Note 1.gif

What changes? What stays the same?

I could have let them simply discuss what they noticed. But instead I asked them to “Notice & Note”, using words, pictures, and numbers to write and sketch what they saw.

Then I asked them to share what they noticed with a partner and add to their own notes as desired.


Screen Shot 2016-10-07 at 3.37.01 PM.png

Our classroom discussion revealed that the equation of the circle formed by tracing point P was x2 + y2 = 52.

Notice & Note 2.gif

Students continued to “Notice & Note” as they moved a circle around in the coordinate plane. What changes? What stays the same?


Notice & Note 3Notice & Note 4

As we moved P around in the coordinate plane, and then as they later moved the circle around in the coordinate plane students noted what they saw. Eventually, students generalized the center-radius form of an equation.

Notice & Note 5.gif

Notice & Note, by Kylene Beers and Robert E. Probst, is a guide of signposts (strategies) for close reading of text. Students are taught signposts to notice while they are reading, and they are asked to stop reading and note what the signpost might imply. “Again & Again” is one signpost. Do you notice an event in the text that keeps happening again and again? Do you notice a phrase in the text that is repeated again and again? Stop reading, note it, and think about what that might mean (Beers and Probst 2013). How might we take advantage of the ways that students are learning to read text in their English Language Arts (ELA) classes to guide students in inquiry based exploration of mathematics?

In her online course, Sunni Brown, author of The Doodle Revolution, states that “Tracking content using imagery, color, word pictures and typography can change the way you understand information and also dramatically increase your level of knowledge and retention” (Brown 2016). How do we make tracking content using words, pictures, and numbers a reality in the 1:1 classroom? My experience is that it doesn’t happen without deliberate emphasis on its importance.

In Reading Nonfiction, Beers and Probst write “When students recognize that nonfiction ought to challenge us, ought to slow us down and make us think, then they’re more likely to become close readers” (Beers and Probst 2016). Our ELA counterparts are on to something. Effective classroom instruction is not just about creating learning episodes for our students to experience the mathematics using the Math Practices. Effective classroom instruction incorporates practices that will help students remember what they are learning longer than for the next test.


As I think about our district’s continued implementation of 1:1 technology, I am convinced that we need to pay attention to when we are asking, encouraging, and requiring students to use pencil and paper to create a record of what they are learning. I am interested in thinking more about how we might blend the use of dynamic graphs and geometry software with Notice & Note – using words, pictures, and numbers, along with color, so that students not only have a record of what they are learning but also have a better chance of remembering it later. And so, the journey continues …


Beers, G. Kylene, and Robert E. Probst. Notice & note: Strategies for close reading. Portsmouth: Heinemann, 2013. Print.

Beers, G. K., & Probst, R. E. (2016). Reading nonfiction: Notice & note stances, signposts, and strategies. Portsmouth: Heinemann.

Brown, S. (n.d.). Visual Note-Taking 101 / Personal Infodoodling™. Retrieved April 25, 2016, from

Hotz, Robert Lee. “Can handwriting make you smarter?” The Wall Street Journal. 04 Apr. 2016. Web. 25 Apr. 2016.

Mueller, P. A., and D. M. Oppenheimer. “The pen is mightier than the keyboard: Advantages of longhand over laptop note taking.” Psychological Science 25.6 (2014): 1159-168. Web.


Tags: , , , , ,

Is This a Rectangle?

Is This a Rectangle?

One of our learning intentions in our Coordinate Geometry unit is for students to be able to say I can use slope, distance, and midpoint along with properties of geometric objects to verify claims about the objects.

G-GPE. Expressing Geometric Properties with Equations

B. Use coordinates to prove simple geometric theorems algebraically

  1. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).

We recently used the Illustrative Mathematics Task Is This a Rectangle to provide students the opportunity to practice.

We also used Jill Gough’s and Kato Nims’ visual #ShowYourWork learning progression to frame how to write a solution to the task.

How often do we tell our students Show Your Work only to get papers on which work isn’t shown? How often do we write Show Your Work next to a student answer for which the student thought she had shown her work? How often do our students wonder what we mean when we say Show Your Work?

0 showyourwork-es1.png

The Show Your Work learning progression begins to help students understand what we mean when we say Show Your Work. I have seen it empower students to ask each other for feedback on their work: Can you read this and understand it without asking me any questions? It has been transformative for my AP Calculus students as they write Free Response questions that will be scored by readers who can’t ask them questions and don’t know what math they can do in their heads.

We set the timer for 5 minutes of quiet think time. Most students began by sketching the graph on paper or creating it using their dynamic graphs software. [Some students painfully and slowly drew every tick mark on a grid, making me realize I should have graph paper more readily available for them.]

They began to look for and make use of structure. Some sketched in right triangles to see the slope or length of the sides. Some used slope and distance formulas to calculate the slope or length of the sides.

I saw several who were showing necessary but not sufficient information to verify that the figure is a rectangle. I wondered how I could steer them towards a solution without telling them they weren’t there yet.

I decided to summarize a few of the solutions I was seeing and send them in a Quick Poll, asking students to decide which reasoning was sufficient for verifying that the figure is a rectangle.

10 Screen Shot 2016-03-23 at 9.41.00 AM.png

Students discussed and used what they learned to improve their work.

It occurred to me that it might be helpful for them to determine the Show Your Work level for some sample student work. And so I showed a sample and asked the level.

But I didn’t plan ahead for that, and so I hurriedly selected two pieces of student work from last year to display. I was pleased with the response to the first piece of work. Most students recognized that the solution is correct and that the work could be improved so that the reader knows what the student means.

I wish that I hadn’t chosen the second piece of work. Did students say that this work was at level 3 because there are lots of words in the explanation and plenty of numbers on the diagram? Unfortunately, the logic is lacking: adjacent sides perpendicular is not a result of parallel opposite sides. Learning to pay close enough attention to whether an argument is valid is good, hard work.

Tasks like this often take longer than I expect. I’m not sure whether that is because I am now well practiced at easing the hurry syndrome or whether that is because learning to Show Your Work just takes longer than copying the teacher’s work. And so the journey continues …

1 Comment

Posted by on April 11, 2017 in Coordinate Geometry, Geometry, Polygons


Tags: , , , , ,

Leading Mathematics Education in the Digital Age

Leading Mathematics Education in the Digital Age
2017 NCSM Annual Conference
Pre-Conference Sessions
Jennifer Wilson
Jill Gough

How can leaders effectively lead mathematics education in the era of the digital age?  

There are many ways to contribute in our community and the global community, but we have to be willing to offer our voices. How might we take advantage of instructional tools to purposefully ensure that all students and teachers have voice: voice to share what we know and what we don’t know yet; voice to wonder what if and why; voice to lead and to question.

[Cross-posted at Experiments in Learning by Doing]


Tags: , , ,

Sneak Peek: Leading Mathematics Education in the Digital Age

Leading Mathematics Education in the Digital Age


How can leaders effectively lead mathematics education in the era of the digital age? There are many ways to contribute in our community and the global community, but we have to be willing to offer our voices. How might we take advantage of instructional tools to purposefully ensure that all students and teachers have voice: voice to share what we know and what we don’t know yet; voice to wonder what if and why; voice to lead and to question.

Sneak peek for our session includes:

How might we empower our learners to own their learning? How might we provide opportunities for our learners to level up to the learning target, knowing what they know and what they don’t know yet? How might we encourage our learners to add to the learning of their classmates?

Interested? Here’s a sneak peek at a subset of our slides as they exist today. Disclaimer: Since this is a draft, they may change before we see you in San Antonio.

Screen Shot 2017-03-12 at 3.19.36 PM.png

Here is Jill’s sneak peek, in case you missed it.



Tags: , , , , ,

Using Technology Alongside #SlowMath to Promote Productive Struggle

Using technology alongside #SlowMath to promote productive struggle
2017 T³™ International Conference
Sunday, March 12, 8:30 – 10 a.m.
Columbus AB, East Tower, Ballroom Level
Jennifer Wilson
Jill Gough

One of the Mathematics Teaching Practices from the National Council of Teachers of Mathematics’ (NCTM) “Principles to Actions” is to support productive struggle in learning mathematics.

  • How does technology promote productive struggle?
  • How might we provide #SlowMath opportunities for all students to notice and question?
  • How do activities that provide for visualization and conceptual development of mathematics help students think deeply about mathematical ideas and relationships?

[Cross posted at Experiments in Learning by Doing]


Tags: , , , , , ,

Read, apply, learn

Read, apply, learn
2017 T³™ International Conference
Saturday, March 11, 8:30 – 10 a.m.
Columbus H, East Tower, Ballroom Level
Jennifer Wilson
Jill Gough

How might we take action on current best practices and research in learning and assessment? What if we make sense of new ideas and learn how to apply them in our own practice? Let’s learn together; deepen our understanding of formative assessment; make our thinking visible; push ourselves to be more flexible; and more. We will explore some of the actions taken while tinkering with ideas from Tim Kanold, Dylan Wiliam, Jo Boaler and others, and we will discuss and share their impact on learning.

[Cross posted at Experiments in Learning by Doing]


Tags: , , , , , , , ,