RSS

Tag Archives: reason abstractly and quantitatively

The Circumference of a Cylinder

We talked about pi earlier this week in geometry, and we used Andrew Stadel’s water bottle question to start.

I’m not one to pull of the wager that Andrew used (unfortunately, my students will agree that I am a bit too serious for that), but we still had an interesting conversation.

Compare the circumference and height of the water bottle.

1 2016-02-12 12.56.07

Here’s what they estimated by themselves.

2 Screen Shot 2016-02-08 at 9.18.12 AM

Then they faced left if they thought height > circumference, straight if =, and right if height < circumference. (I saw Andrew lead this at CMC-South year before last … I certainly didn’t think of it myself.) They found someone who agreed with their answer, and practiced I can construct a viable argument and critique the reasoning of others.

3 2016-02-08 09.05.36

Next they found a second person who agreed, and practiced I can construct a viable argument and critique the reasoning of others again. (By this time, we decided it was easier to raise 1, 2, or 3 fingers based on answer choice rather than turn a certain direction as it was a challenge for some to see someone turned the same direction.) Finally, they found someone who disagreed, and practiced I can construct a viable argument and critique the reasoning of others.

4 2016-02-08 09.07.26

I sent the poll again.

It didn’t change much.

5 Screen Shot 2016-02-08 at 9.18.26 AM

So without discussion, I sent a poll with a bit more context … a cylindrical can holding 3 tennis balls. Would the can of tennis balls help them reason abstractly and quantitatively?

6 02-12-2016 Image001

Apparently not.

Here’s what they thought by themselves.

7 Screen Shot 2016-02-08 at 9.18.32 AM.png

And here’s what they thought after talking with someone else.

8 Screen Shot 2016-02-08 at 9.18.39 AM.png

The clock was ticking. I still wanted us to talk about pi. I asked someone who correctly answered to share her thinking with the rest of the class to convince them. And we used string to show that the water bottle circumference was, in fact, longer than its height.

I intended to follow up with this Quick Poll. But I was in a hurry and forgot. Maybe next year.

9 02-25-2016 Image001.jpg

You can find more number sense ideas from Andrew here.

I’ll look forward to hearing about how they play out in your classroom, as the journey continues …

Advertisements
 
 

Tags: , , , , , ,

An Infinite Number of Rectangles

We have started our unit on the definite integral for a few years now with Lin McMullin’s The Old Pump.

I love watching students work without yet having developed Riemann Sums. Many use areas of rectangles to approximate the amount of water in the tank, but even then, they don’t all do it the same way.

1 Screen Shot 2014-11-29 at 10.55.04 AM

2 Screen Shot 2014-11-29 at 10.55.17 AM 3 11-05-2014 Image001 4 Screen Shot 2014-11-29 at 10.55.31 AM

 

That work leads us to developing the idea of estimating area between a curve and the x-axis using Riemann Sums and the Trapezoidal Rule. And then we are finally ready to determine the exact area between a curve and the x-axis using a Riemann Sum with an infinite number of rectangles.

We practice reason abstractly and quantitatively throughout these lessons.

7.5 SMP2 #LL2LU

Once we’ve thought about numerical approximations for area between a curve and the x-axis, we spend some time writing a Riemann Sum to represent area and evaluating its limit as the number of rectangles approaches ∞. I want them to be able to go backwards, too. So we start with a limit, and I ask them what definite integral will have the same value.

Which is apparently not as difficult as the groans suggested when I first gave it to them.

5 Screen Shot 2014-11-17 at 12.55.00 PM

6 Screen Shot 2014-11-17 at 12.59.01 PM

But we are always working on our Mathematical Flexibility, and while I was pleased that everyone can get a definite integral, I was disappointed that they all did it the same way. Jill Gough has provided us with a leveled learning progression for Mathematical Flexibility.

6.5 MathFlex_Alg

Can you write another definite integral for which the area can be calculated using the given limit?

It took a while. But students made progress. Some made use of the symmetry of the graph of y=x2 to write a second integral.

7 Screen Shot 2014-11-17 at 1.08.41 PM

Some figured out that translating the parabola and the limits of integration one unit to the right would result in a region that has the same area.

Those were the types of answers I was expecting. But I also got answers I wasn’t expecting.

Some of my students were on the path to Level 4 of reason abstractly and quantitatively, beginning to generalize the idea of translating the parabola and the limits of integration c units to the right, resulting in a region that has the same area. They didn’t quite make it, as their limits were shifted to the right c but their parabola shifted to the left c. I was still impressed by their jump to Level 4, finding connections between pathways.

Our TI-Nspire CAS software let us check our results and helped us attend to precision.

8 Screen Shot 2014-11-17 at 1.19.38 PM 9 Screen Shot 2014-11-17 at 1.20.31 PM

And so the journey continues … learning more from my students and our technology every day about mathematical flexibility.

 
2 Comments

Posted by on February 11, 2015 in Calculus

 

Tags: , , , , ,

Circles and Squares

As we finished up our unit on Geometric Measure and Dimension, we used a task from the Mathematics Assessment Project called Circles and Squares.

Screen Shot 2014-06-01 at 4.43.22 PM

This task is no different from many other tasks in scaffolding the work that students will likely need to do in order to answer the final question – what is the ratio of the areas of the two squares. Instead of going straight to the questions, I just showed students a picture of the diagram and asked them to complete the prompt “I wonder …”.

Screen Shot 2014-06-01 at 4.38.13 PM

if the right triangle inside the smaller square is half of the larger right triangle.         1

what is the side length of either square or t he diameter\\radius of the circle           1

if the area of the sectors in the circle have the same area as the curved triangle thing          1

what the similarity ratio is of the small square to the large square       1

if there is a proportional relation between the area of the big square and the area of the little square, regardless of the radius of the circle   1

if circles and squares can keep going into each other infinitely  1

what are the dimensions of the two squares?       1

cibrcles           1

is the small square similar to the large square     1

what the ratio of small to big square is      1

if the area of the circle not encompassed by the smaller square is the same as the bigger squar     1

how the radii of all three shapes are related        1

if the squares are simular.   1

if the area of all of the shapes are related 1

is the area between the smaller square and circle equivalent to the area between the larger square and circle   1

if the smaller square is half the larger square      1

what is the radius of the smaller square compared to the larger square?        1

why there isnt another circle          1

what we could possibly do with all of the possible calculations  1

if the shapes are similar anc how they relate to each other        1

Is the square scale facator 1.5?       1

if the smaller square is proportional to the larger one.    1

why the smaller square is significant.        1

how the areas of the shapes relate to each other 1

if we can figre ot the areaof the space between the shapes        1

if the the smaller square has ((1)/(2))the area of the largest? 1

why there is a circle represented in between 2 squares 1

do all these have the same center  1

I’m not sure what I expected, but I am still always surprised how often what students wonder is tied to our learning goals for the lesson. Next I asked them to estimate the ratio of the area of the smaller square to the larger square.

Screen Shot 2014-06-01 at 4.47.36 PM

Screen Shot 2014-06-01 at 4.47.49 PM Screen Shot 2014-06-01 at 4.48.01 PM

And then I gave them the handout, which had the scaffolding questions from the Mathematics Assessment Project. As students worked, I sent Quick Polls to assess their work. Students kept working with their teams after submitting their responses. I only stopped them for a whole class discussion when I felt like their responses needed that.

Screen Shot 2014-06-01 at 4.49.36 PM

After the first question, I went to the table of the three who didn’t answer correctly to find out their thinking.

Screen Shot 2014-06-01 at 4.51.41 PM

After the second question, I stopped them for a moment to ask why the “Quick Poll grader” had marked both of the first two responses correct.

Screen Shot 2014-06-01 at 4.53.09 PM

After the third question, I deselected “Show Correct Answer” and asked the teams to decide which expressions we should mark as correct, equivalent to 1:2.

This task provided students a good opportunity to both reason abstractly and quantitatively and look for and make use of structure.

2014-04-24 09.12.44 2014-04-24 09.11.49 2014-04-24 09.11.10

We neglected to go back to the class estimates to discuss how they had done. There’s always next year, right?

And so the journey continues …

 

Tags: , , , , , ,

Length & Area Cards

We started our unit on Geometric Measure & Dimension with a Mathematics Assessment Project formative assessment lesson on Evaluating Statements about Length and Area.

I chose the card that each group would explore ahead of time. I only gave each group one card, and I had another task ready for them if they finished early. They didn’t. Students chose whether they wanted to explore on paper or using technology.

Each card had a hint, which I held until I felt like the group might need it. While students were working, I monitored their progress.

Screen Shot 2014-05-03 at 2.55.02 PM   Screen Shot 2014-05-03 at 2.56.05 PM

The third group had Rectangles.

Draw a diagonal of a rectangle and mark any point on it as P. Draw lines through P, parallel to the sides of the rectangle. The two shaded rectangles have equal areas.

Draw a diagonal of a rectangle and mark any point on it as P. Draw lines through P, parallel to the sides of the rectangle. The two shaded rectangles have equal perimeters.

They read through their card and drew a few diagrams, but they decided to spend most of their time building the scenario using our dynamic geometry software.

When it was time for this group to present their work, we sent the Quick Polls so that we would know what students instinctually thought, even though they had not all had time to explore the statements in depth. I am learning to make use of the TI-Nspire Navigator allowing me to send more than one Quick Poll at a time.

Screen Shot 2014-05-10 at 5.39.00 PM

Screen Shot 2014-05-10 at 5.39.10 PM

I showed the results, but I deselected Show Correct Answer before doing so. I wanted the group to know what their peers thought before they just told them the results.

I used the Live Presenter feature of Navigator to make one of the student’s calculators live on the projector at the front of the room. They grabbed and moved the point that changed the point on the diagonal.

05-05-2014 Image001

What do you see? A lot of rectangles.

What is true about the rectangles? Some have a diagonal.

What does the diagonal buy us? Triangles. Congruent triangles.

So the shaded areas are always equal.

What about their perimeters? When are they equal? When P is the midpoint of the diagonal, we can show that all four rectangles are congruent.

05-05-2014 Image002 05-05-2014 Image003 05-05-2014 Image004 05-10-2014 Image005 05-10-2014 Image006

 

The fourth group had Medians of a Triangle.

If you join each vertex of a triangle to the midpoint of the opposite side, the six triangles you get all have the same area.

This group spent most of their time building the scenario using our dynamic geometry software.

05-10-2014 Image007 05-10-2014 Image008 05-10-2014 Image009

The students used technology to see that the statement was true. Then they talked about why. Technology helps us see things that we might not see at first glance. Technology shows us that something is true (or not). Even though we still have to make sense of why it is true (or not). Technology makes more problems accessible to more of my students.

What did the class think about this group’s statement?

Screen Shot 2014-05-10 at 6.05.24 PM

I didn’t get to hear this group’s presentation. Another teacher in my department had my students on this day. But this group spent a lot of time looking for and making use of structure.

05-10-2014 Image010

How do we know that the brown triangle has the same area as the yellow triangle?

How do we know that the triangle formed by the green, orange, and brown triangles is equal to the triangle formed by the blue, pink, and yellow triangles?

How do we know that the triangle formed by the green, orange, and blue triangles is equal to the triangle formed by the brown, pink, and yellow triangles?

 

The fifth group had Square and Circle.

If a square and a circle have the same perimeter, the circle has the smallest area.

Screen Shot 2014-05-10 at 8.32.56 PM

This group mostly reasoned quantitatively. They didn’t use the technology, but we looked at a square and circle that had been built with the same perimeter so that we could have that dynamic feel to make sense of their results.

05-10-2014 Image01105-10-2014 Image01205-10-2014 Image013

The last group had Midpoints of a Quadrilateral.

If you join the midpoints of the sides of a quadrilateral, you get a parallelogram with one half the area of the original quadrilateral.

We’ve talked before about the result of joining the midpoints of the sides as a parallelogram, but we had never discussed the areas of the figures.

I enjoyed looking at the work this group did using their technology to make sense of the statement.

05-10-2014 Image018 05-10-2014 Image019 05-10-2014 Image020  05-10-2014 Image022  05-10-2014 Image02105-10-2014 Image023

Why is this statement always true?

Screen Shot 2014-05-10 at 8.33.04 PM

05-10-2014 Image014 05-10-2014 Image015 05-10-2014 Image016 05-10-2014 Image017

Last year a teacher in our department had several students wonder if they would do cards like these again in class. She asked them why they wanted to do more. The students answered, “Because they were like puzzles. It was fun to figure them out.”

And so the journey continues …

 

Tags: , , , ,

Evaluating Statements about Enlargements

We recently used the Mathematics Assessment Project formative assessment lesson on Evaluating Statements about Enlargements.

I had just returned from NCSM where I heard Tim Kanold’s session “Beyond Teaching for Understanding: The elements of an authentic formative assessment process”. In the session, he suggested that no more than 35% of class should be the teacher leading from the front of the classroom. I was determined to figure out how this played out in my classroom when I got back to school. I also found a blog post where he talks about leaving the front of the classroom behind.

We started with Candy Rings.

Screen Shot 2014-05-11 at 5.22.19 PM

Screen Shot 2014-04-16 at 9.41.23 AM

When I got the results from the first poll, I knew I was in trouble. Why did you choose “correct”, Amber? Two of the small rings has the same total circumference as one of the large rings. Why did you choose “incorrect”, Ryan? Some of the pieces on the larger ring look broken. Those on the smaller ring are closer together.

Against my better judgment, I asked the next question. After all, construct a viable argument and critique the reasoning of others is how we are learning math, right?

If the price of the small ring of candy is 40 cents, what is a fair price for a large one?

Screen Shot 2014-04-16 at 9.41.32 AM

Screen Shot 2014-04-16 at 9.41.41 AM

Screen Shot 2014-04-16 at 9.41.48 AM

About half of the class used proportional reasoning, deciding that 80 cents was fair. The other half used business reasoning. Some included tax. Some decided that the larger portion should have a bit of a discount. All of them had an argument for why they chose what they did.

 

Screen Shot 2014-05-11 at 5.34.14 PM

No one thought that Jasmina reasoned correctly about the amount of pizzas.

Screen Shot 2014-04-16 at 9.41.59 AM

And only a few insisted on using business sense to come up with a fair price for a large pizza.

Screen Shot 2014-04-16 at 9.42.06 AM

Screen Shot 2014-04-16 at 9.42.12 AM

Students then worked with their teams to determine whether their cards with statements about enlargements were true or false. I gave each team 6 cards to evaluate. They reasoned abstractly and quantitatively. They constructed viable arguments and critiqued the reasoning of others. They even had a good time.

2014-04-24 14.51.14

2014-04-24 14.51.42

This particular class clocked in at exactly 65% peer-to-peer discussion. Even then, the 35% whole group discourse wasn’t just one raised student hand at a time. I used the Quick Poll results to selectively call on students who don’t always raise their hand. They presented their argument and the class decided whether to buy it or not. I was there to facilitate the conversation and move it forward. I’m not sure whether that only counts as “leading from the front of the classroom”.

Either way, the journey to leave the front of the classroom behind continues …

 

Tags: , , , , , , , ,

Coordinate Geometry Proofs

G-GPE.B. Use coordinates to prove simple geometric theorems algebraically

4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).

How would you give students ownership of this standard?

We had been reasoning quantitatively and were ready to move into reasoning abstractly.

Screen Shot 2014-05-03 at 1.00.06 PM

Where would you conveniently locate each figure in the coordinate plane?

Some students put a vertex of the square at the origin.

Screen Shot 2014-05-03 at 1.00.35 PM

Others put the center of the square at the origin.

Screen Shot 2014-05-03 at 1.00.43 PM

What about a parallelogram?

Screen Shot 2014-05-03 at 1.09.14 PM

What about the coordinates for point P in this parallelogram?

Screen Shot 2014-05-03 at 12.58.42 PM

I loved seeing how students wrote their responses in different ways. You can see how they were thinking about calculating the coordinates of the P, which led to good whole class discourse.

Screen Shot 2014-05-03 at 12.58.13 PM Screen Shot 2014-05-03 at 12.58.32 PM

 

Screen Shot 2014-05-03 at 12.59.09 PM

How would you locate a kite in the coordinate plane?

Several students showed us what they did on our interactive whiteboard.

Screen Shot 2014-05-03 at 1.01.13 PM

And one made me realize that I need to make my kite less special. The almost right angle for the “top” angle of the kite (when oriented “normally”) led to a response that a non-right angle might not have.

 

We reasoned abstractly to show that the diagonals of a rectangle are congruent. Some students used the distance formula.

Screen Shot 2014-05-03 at 1.13.24 PM

Others used the Pythagorean Theorem.

Screen Shot 2014-05-03 at 1.13.52 PM

We reasoned abstractly with triangles.

Screen Shot 2014-05-03 at 1.03.01 PM

But we still need more work. Only 20% of students were successful on this question on their summative assessment.

Screen Shot 2014-05-03 at 1.18.36 PM

At least we get a do over for next year, right? And so the journey continues … learning and revising.

 
 

Tags: , , , ,

Area Formulas

We started a unit on Geometric Measure and Dimension a few weeks ago. During the first lesson I asked whether students had made sense of the formulas for the areas of a triangle, parallelogram, and trapezoid, or whether they had just memorized them without understanding. Since they said the latter, we took a few minutes to make sense of the formulas.

We used Area Formulas from Geometry Nspired for demonstration.

04-02-2014 Image007

We moved B and H. What do you notice about the given rectangle and parallelogram?

Their bases have the same length.

They have the same height.

What is true about their areas?

They are equal.

How do you know?

04-02-2014 Image008

What is the formula for the area of a parallelogram?

 

04-02-2014 Image006

We moved B and H. What do you notice about the given parallelogram and triangle?

Their bases have the same length.

They have the same height.

What is true about their areas?

They are not equal.

What relationship does the area of the parallelogram have to the area of the triangle?

It is twice the area of the triangle.

The area of the triangle is ½ the area of the parallelogram.

How do you know?

04-02-2014 Image004 04-02-2014 Image005

So what about the area of a trapezoid?

I didn’t show them the next page in the TNS document.

I showed them a general trapezoid and asked them to work for a few minutes alone to make sense of how to calculate the are of the trapezoid.

Screen Shot 2014-04-27 at 8.00.46 PM

I walked around and watched.

Screen Shot 2014-04-27 at 8.03.30 PM Screen Shot 2014-04-27 at 8.03.17 PM Screen Shot 2014-04-27 at 8.02.47 PM Screen Shot 2014-04-27 at 8.02.21 PM

Whose would you choose for a whole class discussion?

I asked DT to show us her picture first. She had decomposed the trapezoid into two triangles using a diagonal. We were able to use the distributive property to show that the area of the two triangles was the same as the textbook trapezoid formula.

Screen Shot 2014-04-02 at 9.23.06 AM

As you can see in the bottom right, another student had decomposed the trapezoid into three triangles. We didn’t take the time to show that the area of the three triangles was the same as the textbook trapezoid formula.

 

I asked BA to show us her work next. She had decomposed the trapezoid into a parallelogram and a triangle. Again, we were able to show how the area she calculated was the same as the textbook trapezoid formula.

Screen Shot 2014-04-02 at 9.23.39 AM

I asked MA to show us her work next. She had recomposed the trapezoid into a rectangle that had a base equal to the median of the trapezoid and a height the same as the trapezoid. Again, we were able to show how the area she calculated was the same as the textbook trapezoid formula.

Screen Shot 2014-04-02 at 9.23.46 AM

I asked BE, whose work I somehow missed photographing, to explain what he did last. Unknown to him, his work was like that shown in the TNS document.

04-27-2014 Image001 04-02-2014 Image003

I teach a high school geometry class. Every day I wonder whether I waste my students’ time going back and making sense of concepts that they’ve been using for a while mathematically. I struggle to know what is our best use of class time. Surely there is a way that my students could have done this outside of class … would it have been effective? We were at five ways and counting to make sense of the formula. I’m not sure that is trivial. My students were reasoning abstractly and quantitatively, even if the math content was not an explicit part of our standards. And so the journey continues …

 
 

Tags: , , , , , ,