RSS

Tag Archives: Pythagorean Theorem

Hopewell Geometry – Misconceptions

Last year I posted student work from the Mathematics Assessment Project task Hopewell Triangles. This year I want to talk about the conversations that we had.

Screen Shot 2014-01-31 at 5.43.01 PM

Screen Shot 2014-01-31 at 5.43.12 PM

Students worked on the task for 15-20 minutes by themselves. For those who didn’t need that long, I had two other tasks from Illustrative Mathematics on the back of the handout: Seven Circles I and Shortest Line Segment from a Point P to a Line L.

After students worked by themselves, I collected their responses in the TNS document I had sent. They started talking about their results with their groups. Apparently I didn’t make it clear to the whole class that I would be collecting their responses, because everyone had not keyed in their responses, but I looked at the responses that I did get to monitor student progress while they were talking with their groups. I noticed that one student had answered question 4 incorrectly.

Screen Shot 2014-01-22 at 9.20.34 AM

So I went to his group and listened to them as they constructed a viable argument and critiqued the reasoning of others. Alex explained how he had arrived at his wrong answer. Can anyone figure out Alex’s misconception?

In our whole class discussion, I made sure that Alex shared his thinking. We all have something to learn from other’s misconceptions and we have created a classroom where it is okay to learn from incorrect thinking. It turns out that Alex used inverse tangent to calculate the acute angle measures. He then concluded that the triangle was right because it had a right angle (since the two acute angles were complementary), not realizing his circular logic in assuming that the triangle was right to use right triangle trigonometry for his acute angle calculations.

Screen Shot 2014-01-17 at 10.01.18 AM

Can we show that Alex’s thinking doesn’t work in conjunction with what we know about the other triangles?

Triangle 3 is a 45°-45°-90° triangle, and so its acute angles are 45°. At least half of the students recognized that they had already calculated one of the acute angles for Triangle 1 in problem #2. Then we can show by the Angle Addition Postulate that we have a problem when the shaded triangle is right since 53°, 90°, and 45° don’t sum to 180°.

Most students used the Pythagorean Theorem to show that the shaded triangle was not right, which was our next whole class conversation. One student told us that the hypotenuse of Triangle 3 was 5√2, which he knew because of our work with Special Right Triangles. Another student used the Pythagorean Theorem on Triangle 2 to get its hypotenuse of 7√5. And then another showed us that (5√2)2+(7√5)2≠(15)2. This would have been the end of the conversation in my class when I first started teaching. But because our focus is not only on correct answers but also on logical arguments and understanding, a student stopped us from continuing by asking a question. Why is the hypotenuse of Triangle 2 7√5 instead of 7√3? What a good question. Why is the hypotenuse of Triangle 2 7√5 instead of 7√3?

Screen Shot 2014-01-17 at 10.01.09 AM

How did you get 7√3? The triangle has side lengths 7 and 14, so I assumed the triangle was a 30°-60°-90° triangle. Another student cleared up that misconception. Side lengths of x and 2x are for a 30°-60°-90° triangle only when 2x is the length of the hypotenuse.

The last whole class conversation happened because I overhead a group talking about how they knew Triangle 1 was similar to Triangle A. I had asked them to remember that part of the conversation because I was going to ask them to discuss it with the whole class later. One girl said that she knew the triangles were similar because she saw that 3-4-5 was proportional to 9-12-15. But she was having a hard time visualizing how the triangles were similar. How could we show that the two triangles are similar to each other?

How do we define similarity? Two figures are similar if there is a dilation (and if needed, a sequence of rigid motions) that will map one figure onto the other. Can we show that to be true for Triangle A and Triangle 1?

We need several rigid motions along with the dilation to show that Triangle A and Triangle 1 are similar:

Reflect Triangle A about the side that is 3 units.

Rotate Triangle A’ 270° about the vertex of the angle opposite the side that is 3 units. Let’s call that point X’.

Translate Triangle A’’ by a vector that goes from X’’ to the left vertex of the given rectangle.

Dilate Triangle A’’’ about point X’’’ by a scale factor of 3.

Screen Shot 2014-01-17 at 10.00.49 AM

I was amazed at the mathematics in this lesson and the opportunity for students to make connections. What a great task! If I had written the task, it wouldn’t have occurred to me to include a triangle that students might mistake for a 30°-60°-90° triangle. Instead, the students were given the opportunity to construct a viable argument and critique the reasoning of others. It might not have occurred to me to include a calculation in an early question (#2) that students could use again in the final question (#4) – I would have likely changed the angle measures to have them perform two different calculations. Instead, the students were given the opportunity to look for regularity in repeated reasoning. If I had written the task and included a triangle similar to one of the others, I doubt it would have occurred to me to make one of them have a different orientation than the other. Instead, the students were given the opportunity to look for and make use of structure.

And so the journey continues, with great tasks like this one to make student misconceptions evident and to correct those misconceptions …

 
6 Comments

Posted by on February 2, 2014 in Geometry, Right Triangles

 

Tags: , , , ,

Exploring the Equation of a Circle

CCSS-M G-GPE-1

Expressing Geometric Properties with Equations G-GPE

Translate between the geometric description and the equation for a conic section

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

CCSS-M 8.G.8

Understand and apply the Pythagorean Theorem.

8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

We used the Geometry Nspired activity Exploring the Equation of a Circle to begin our exploration of circles.

We also used some ideas from the Mathematics Assessment Project formative assessment lesson Equations of Circles 1.

The TNS document begins by having students observe what they know about the given triangle.

06-18-2013 Image002

It is a right triangle.

As students move point P, what happens?

06-18-2013 Image0021

The triangle is still right.

The hypotenuse stays 5.

The legs change length depending on the location of P.

Some students might say that a2+b2=52, if we let a and b represent the legs of the right triangle.

Then we do a geometry trace of P as we move P.

What path does P follow?

06-18-2013 Image003

If we let x represent the length of the horizontal length of the leg and y represent the vertical length of the leg, then we can say that x2+y2=52 for this circle. Alternatively, if we let (x,y) represent the coordinates of point P, then we can say that x2+y2=52. Then we explored what happens as we make the radius of the circle shorter and longer.

06-18-2013 Image006

After exploring the equation of a circle centered at the origin, we translate the center in the coordinate plane. Now what can we say about the right triangle that is pictured?

06-18-2013 Image004

After the exploration, we used the sorting activity in the Mathematics Assessment Project’s formative assessment lesson.

Screen Shot 2013-06-18 at 11.52.20 AMScreen Shot 2013-06-18 at 11.33.49 AM

And then TI-Nspire Navigator provided a good opportunity for formative assessment – and for students to attend to precision.

Screen Shot 2013-06-18 at 11.31.51 AM Screen Shot 2013-06-18 at 11.32.06 AM Screen Shot 2013-06-18 at 11.32.28 AM

My students left class not only with an understanding of how the Pythagorean Theorem is related to the Distance Formula and the Equation of a Circle, but they also got some good practice attending to precision through the formative Quick Poll that I sent and by categorizing circle equations. This was a much better lesson than I have had in previous years of teaching the equation of a circle.

And hopefully next year will be even better as the journey continues …

 
 

Tags: , , , , , , , ,