# Tag Archives: NCTM Mathematics Teacher Blog

I was invited to write a few posts for NCTM’s Mathematics Teacher Blog: Joy and Inspiration in the Mathematics Classroom.

Ask, Don’t Tell (Part 4): The Equation of a Circle

Ask, Don’t Tell (Part 3): Special Right Triangles

Ask, Don’t Tell (Part 2): Pythagorean Relationships

Ask, Don’t Tell (Part 1): Special Segments in Triangles

While you’re there, be sure to catch up on any other posts you haven’t read. There are some great ones by Matt Enlow, Chris Harrow, and Kathy Erickson.

“Ask Don’t Tell” learning opportunities allow the mathematics that we study to unfold through questions, conjectures, and exploration. “Ask Don’t Tell” learning opportunities begin to activate students as owners of their learning.

I haven’t always provided “Ask Don’t Tell” learning opportunities for my students. My coworkers and I spend our common planning time thinking through questions that we can ask to bring out the mathematics. We plan learning episodes so that students can learn to ask questions as well. (Have you read Make Just One Change: Teach Students to Ask Their Own Questions?)

After the Special Right Triangles post, someone commented on NCTM’s fb page something like the following: “Really? You told students the relationships without any explanation?”

I have always used the Pythagorean Theorem to show why the relationship between the legs and hypotenuse in a 45˚-45˚-90˚ is what it is. But I think that’s different from “Ask Don’t Tell”.

I have been teaching high school for over 20 years. And yes. I really used to tell my geometry students the equation of the circle. I told them definitions for special segments in triangles along with drawing a diagram. I told them how to determine whether a triangle was right, acute, or obtuse. And I told them the relationships between the legs and hypotenuse for 45˚-45˚-90˚ and 30˚-60˚-90˚ triangles.

I’ve also been in meetings with teachers who have not thought about decomposing a square into 45˚-45˚-90˚ triangles or an equilateral triangle into 30˚-60˚-90˚ triangles to make sense of the relationships between side lengths.

You can see on the transparency from which I used to teach that I actually did go through an example where an equilateral triangle was decomposed into 30˚-60˚-90˚ triangles; even so, I failed to provide students the opportunity to look for and make use of structure.

Purposefully creating a learning opportunity so that the mathematics unfolds for students through questions, conjectures, and exploration is different from telling students the mathematics, even with an explanation for why.

As you reflect on your previous school year and plan for your upcoming school year, what #AskDontTell opportunities do and can you provide?