RSS

Category Archives: Geometry

Is This a Rectangle?

Is This a Rectangle?

One of our learning intentions in our Coordinate Geometry unit is for students to be able to say I can use slope, distance, and midpoint along with properties of geometric objects to verify claims about the objects.

G-GPE. Expressing Geometric Properties with Equations

B. Use coordinates to prove simple geometric theorems algebraically

  1. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).

We recently used the Illustrative Mathematics Task Is This a Rectangle to provide students the opportunity to practice.

We also used Jill Gough’s and Kato Nims’ visual #ShowYourWork learning progression to frame how to write a solution to the task.

How often do we tell our students Show Your Work only to get papers on which work isn’t shown? How often do we write Show Your Work next to a student answer for which the student thought she had shown her work? How often do our students wonder what we mean when we say Show Your Work?

0 showyourwork-es1.png

The Show Your Work learning progression begins to help students understand what we mean when we say Show Your Work. I have seen it empower students to ask each other for feedback on their work: Can you read this and understand it without asking me any questions? It has been transformative for my AP Calculus students as they write Free Response questions that will be scored by readers who can’t ask them questions and don’t know what math they can do in their heads.

We set the timer for 5 minutes of quiet think time. Most students began by sketching the graph on paper or creating it using their dynamic graphs software. [Some students painfully and slowly drew every tick mark on a grid, making me realize I should have graph paper more readily available for them.]

They began to look for and make use of structure. Some sketched in right triangles to see the slope or length of the sides. Some used slope and distance formulas to calculate the slope or length of the sides.

I saw several who were showing necessary but not sufficient information to verify that the figure is a rectangle. I wondered how I could steer them towards a solution without telling them they weren’t there yet.

I decided to summarize a few of the solutions I was seeing and send them in a Quick Poll, asking students to decide which reasoning was sufficient for verifying that the figure is a rectangle.

10 Screen Shot 2016-03-23 at 9.41.00 AM.png

Students discussed and used what they learned to improve their work.

It occurred to me that it might be helpful for them to determine the Show Your Work level for some sample student work. And so I showed a sample and asked the level.

But I didn’t plan ahead for that, and so I hurriedly selected two pieces of student work from last year to display. I was pleased with the response to the first piece of work. Most students recognized that the solution is correct and that the work could be improved so that the reader knows what the student means.

I wish that I hadn’t chosen the second piece of work. Did students say that this work was at level 3 because there are lots of words in the explanation and plenty of numbers on the diagram? Unfortunately, the logic is lacking: adjacent sides perpendicular is not a result of parallel opposite sides. Learning to pay close enough attention to whether an argument is valid is good, hard work.

Tasks like this often take longer than I expect. I’m not sure whether that is because I am now well practiced at easing the hurry syndrome or whether that is because learning to Show Your Work just takes longer than copying the teacher’s work. And so the journey continues …

 
1 Comment

Posted by on April 11, 2017 in Coordinate Geometry, Geometry, Polygons

 

Tags: , , , , ,

A Heuristic Approach to Angles in Circles

I am taking a qualitative research class right now, and my mind is full of lots of new-to-me words (many of which my spell checker doesn’t know, either): hermeneutics, phenomenology, ethnography, ethnomethodology, interpretivism, postpositivism, etc. One that has struck me is heuristic, the definition of which I can actually remember because I try to teach heuristically. (The word does not yet roll off of my tongue, but the definition, I get.)

0 Screen Shot 2017-02-09 at 5.02.00 PM.png

On Monday, our content was G-C.A Understand and apply theorems about circles

  1. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

1 02-09-2017 Image001.jpg

We started with a Quick Poll. I asked students for their best guess for the angle measure. I showed the results without displaying the correct answer, noting the lowest and highest guesses.

2 Screenshot 2017-02-06 09.12.47.png

Students moved to the technology. What happens to the angle measures as you move the points on the circle?

3 Angles in Circles 1.gif

They moved to the next page, which revealed more information. What happens to the angle measures as you move the points on the circle?

4 Angles in Circles 2.gif

5 Screenshot 2017-02-06 09.13.47.png

I sent the poll again. There was one team who hadn’t answered yet, so I made a brief stop by their table. Last semester, I remember reading something about how a certain example might give students the eyes to see what you’re trying to get them to see. So we moved the points around to look something like this.

5_1 02-09-2017 Image002.jpg

If you have 49 and 43, how can you get 46?

Changing the numbers purposefully helped them see.

6 Screenshot 2017-02-06 09.18.51.png

I sent one more poll before we talked about why.

7 Screenshot 2017-02-06 09.25.26.png

So we gave our best guess, and then we used technology to explore. Students practiced MP8 I can look for and express regularity in repeated reasoning as they noticed what stayed the same and what changed with an angle whose vertex is in the center of the circle. They generalized the result. But we hadn’t yet discussed why that happens.

Students practice MP7 I can look for and make use of structure. By now they know our mantra for MP7: What can you make visible that isn’t yet pictured?

8 Screen Shot 2017-02-09 at 5.30.24 PM.png

I saw a line constructed parallel to the given line, which made alternate interior angles visible.

9 IMG_1847.JPG

I saw a chord drawn that made a triangle visible.

10 IMG_1846.JPG

I asked students to write down everything they knew about the angles in this diagram.

11 Screenshot 2017-02-06 09.34.15.png

They made suggestions about what we know. They didn’t say the relationships exactly like I would. I wrote them down anyway. They didn’t recognize the exterior angle of the triangle and so ending up proving the Exterior Angle Theorem again off to the side. I wrote it down anyway.

12 Screenshot 2017-02-06 09.42.22.png

And so the journey continues, always trying to enable my students to discover or learn something for themselves (and sometimes succeeding) …

 
Leave a comment

Posted by on February 9, 2017 in Circles, Geometry

 

Tags: , , , , , ,

5 Practices: Dilations

5 Practices for Orchestrating Productive Mathematics Discussions might be the book that has made me most think about and change my practice for the better in the past 10 years.

At the beginning of our second day on dilations, I asked students to work on this.

0 Screen Shot 2016-12-19 at 3.57.53 PM.png

Because of the 5 Practices, I pay attention differently when I walk around and monitor students working. I know that I looked for different student approaches before I read the book, but I didn’t consciously think about selecting and sequencing them for a whole class discussion. I often asked for volunteers. And then hoped that another student would volunteer when I asked who worked it differently [who had actually worked it differently and correctly].

I asked a few questions of students while I was monitoring them to clarify what they were doing and selected and sequenced a few to share. The student work above looks similar at first glance, but there are subtle differences in their thinking that make important connections about dilations.

TM shared first. She used slope to find the vertices of the image. She went down 1 and to the right 3 from C to X, and then because of the scale factor of 2 went down 1 and to the right 3 from X to get to X’. She went down 3 and to the right 2 to get from C to Z, and then went down 3 and to the right 2 from Z to get to Z’.

5 Screen Shot 2016-12-20 at 8.33.10 AM.png

JA shared next. He focused on the line that contains the center of dilation, image, and pre-image. He knew that X’ would lie on line CX and that Z’ would lie on line CZ.

6 Screen Shot 2016-12-20 at 8.46.47 AM.png

MB shared next. He also used slope, but a bit differently from TM. He noticed “down 1 and to the right 3” to get from C to X and so because of the scale factor of 2 then did “down 2 and to the right 6” from C to get to X. He noticed “down 3 and to the right 2” to get from C to Z and so then did “down 6 and to the right 4” to get from C to Z’.

7 Screen Shot 2016-12-20 at 8.46.53 AM.png

I had not seen additional methods while monitoring. This exercise didn’t take too long, and so I didn’t get around to everyone. [This is where Smith & Stein’s advice about keeping a clipboard to pay closer attention to whom you check in with and whom you call on helps so that you aren’t checking in with and calling on the same few every time you have a whole class discussion.] I hesitated before I asked, but I did then ask, “did anyone find X’Y’Z’ a different way?” [This is also where I am learning to trust my students to recognize when their method is different.] TC raised his hand. I treated C as the origin and used coordinates. He shared his work and showed that the coordinates of X (3, -1) transformed to X’ (6,-2) with a dilation about the origin for a scale factor of 2.

8 Screen Shot 2016-12-20 at 8.46.57 AM.png

And so the journey continues, thankful for friends like Gail Burrill [one of my voices] who recommend authors like Smith and Stein to help me think about and change my practice for the better, making me feel like a conductor rehearsing for a beautiful, exciting mathematics masterpiece …

 
5 Comments

Posted by on December 21, 2016 in Dilations, Geometry

 

Tags: ,

Hinge Questions: Dilations

Students noticed and noted.

1 Dilations 4.gif

I wanted to be sure that they could answer a dilations question based on their observations. I had two questions premade in my set of Quick Polls. Which question would you ask?

In the past, I would have asked both questions without thinking.

I am learning, though, to think more about which questions I ask. If we only have time to ask a few questions, which questions are worth asking?

From slide 34 in Dylan Wiliam’s presentation at the SSAT 18th National Conference (2010) “Innovation that works: research-based strategies that raise achievement”.

3.5 Screen Shot 2016-12-19 at 2.49.57 PM.png

I decided to send the second poll. I decided that if they get that one right, they can both dilate a point about the origin and pay attention to whether they are given the image or pre-image. If I had sent the second poll, I wouldn’t know whether they could both do and undo a dilation.

4 Screenshot 2016-11-11 09.24.27.png

Next we looked at this question.

5 Screenshot 2016-11-15 09.14.34.png

Students worked on paper first.

Then some explored with technology.

6 Dilations 5.gif

What do you want your students to know about the relationships in the diagram?

What question would you ask to see whether they did?

I asked this question to see what my students were thinking.

7 Screenshot 2016-11-15 09.19.05.png

And so the journey to write and ask and share and revise hinge questions continues …

 
3 Comments

Posted by on December 20, 2016 in Coordinate Geometry, Dilations, Geometry

 

Tags: , , , , , ,

Notice & Note: Dilations

How do you give your students the opportunity to practice MP8: I can look for and express regularity in repeated reasoning?

SMP8 #LL2LU Gough-Wilson

We started our dilations unit practicing MP8, noticing and noting.

 

Dilations 1.gif

What would you want students to notice and note?

How do students learn what is important to notice and note?

An important consideration when learning with self-explanation is to look at the quality of the explanation itself. What are the students saying or writing? Are they just regurgitating bits of text or making connections to underlying principles? Do the explanations contain predictions about what is going to happen, try to go beyond the given instruction or do they just superficially gloss over what is already there? Students who make principle-based, anticipative, or inference-containing explanations benefit the most from self-explaining. If students seem to be failing to make good explanations, one can try to give prompts with more assistance. In practice, this will likely take iteration by the instructor to figure out what combination of content, activity and prompt provides the most benefit to students. (Chiu & Chi, 2014, p. 99)

We had a brief discussion about what might be important to notice and note. We’ve also been working on predictions, thinking about what you expect to happen before trying it with technology:

What happens when the center of dilation is on the figure, outside the figure, and inside the figure?

Dilations 2.gif

What happens when the scale factor is greater than 1? Equal to 1? Between 0 and 1? Less than 0?

Dilations 3.gif

 

I observed, walking around the room and using Class Capture, selecting conversations for our whole class discussion.

Screenshot 2016-11-11 08.58.34.png

Screenshot 2016-11-11 09.04.53.png

Here’s what NA noticed and noted.

image_123923953

We looked at Hannah’s Rectangle, from NCSM’s Congruence and Similarity PD Module. Students had a straightedge and piece of tracing paper.

Which rectangles are similar to rectangle a? Explain the method you used to decide.Hannahs Rectangle.png

Screenshot 2016-11-11 09.09.47.png

What would you do next? Would you show the correct responses? Or not?

Would you start with an incorrect answer? or a correct answer?

Would you regroup students based on their responses?

Screenshot 2016-11-11 09.12.11.pngScreen Shot 2016-12-19 at 2.21.33 PM.pngScreen Shot 2016-12-19 at 2.28.17 PM.png

I started with a student who didn’t select G and then one who did. Then I asked a student who selected C to share why he chose C and didn’t choose F. We ended by watching Randy’s explanation on the module video.

And so the journey continues, always wondering what comes next (and sometimes wondering what should have come first) …


Chiu, J.L, & Chi, M.T.H. (2014). Supporting self-explanation in the classroom. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

 

 
Leave a comment

Posted by on December 19, 2016 in Dilations, Geometry

 

Tags: , , , , , , , ,

The Magic Octagon – Dan’s, Andrew’s, and mine

I had saved Andrew’s post in my folder for a recent lesson, which was about Dan’s video.

We paused halfway in, and students decided where it would be. They answered a Quick Poll to let me know, and by the time they had all answered, some had changed their minds.

1-screenshot-2016-09-21-10-44-25

We quickly looked at the responses, and they decided using time would be easier to decipher than some of the other descriptions.

I sent a second poll. I waited for everyone to answer, even the ones who wanted to take their time thinking about it.

2-screenshot-2016-09-21-10-44-43

And then we continued to watch.

We paused for the last question, they discussed with their team, and then we finished watching.

Good conversation. But we didn’t get to the sequel proposed by one of Andrew’s students: If the front side arrow is pointed at 5:00, would the other arrow point at 5:00, too? Why or why not?

So I emailed that question to my students.

  • Yes, the two points move like opposite hands on a clock moving closer to each other and overlapping at 5:00. At about 11:00 they would overlap again. Otherwise, there is no overlap.
  • They would be at 5:00. This is because when he flips the magic octagon, the back arrow also flips, causing the new time to be 3:00 instead of 9:00. This means that if you were to find a line of reflection, you could flip the octagon on that line and the arrow would always land right where the previous one did. If this was on transparent paper, you can see that if one arrow points to 5:00, then the other one would be pointing at 7:00. But if you were to flip the octagon on the reflection line which intersects 12:00 and 6:00, then you would continuously get 5:00 because of the reflection.

As I got the responses from students, I realized that I wished I had asked a different question. While I did include why or why not, and it was obvious from the responses that students didn’t just answer yes or no, I wish I had asked “At what time(s), if any, are the front side and back side arrows at the same time?”

I am reminded of something I can no longer find that I read in a book. A group of teachers observed a “master” teacher for a lesson and then went back to their own classrooms to teach the lesson. The teachers asked the same questions that the master teacher asked; however, the lessons didn’t go as hoped. The teachers were not asking questions based on what was happening in their own classrooms; they were asking questions based on what had happened in the other classroom.

I love reading blog posts and learning from so many mathematics educators. They give me ideas that I wouldn’t have on my own. In fact, as my classroom moved toward more asking and less telling, I used to say that my most important work happened before the lesson, collaborating with other teachers and deciding what questions to ask. I’ve decided otherwise, though. My most important work happens in the moment, not just asking, but also listening. And then, if needed, adjusting what I planned to ask next based on the responses of the students in my care. And so the journey will always continue …

 
7 Comments

Posted by on November 15, 2016 in Geometry, Rigid Motions

 

Tags: , , , ,

MP6 – Defining Terms

Screenshot 2016-01-27 09.07.23.pngHow do you provide your students the opportunity to attend to precision?

1-screen-shot-2016-10-25-at-1-18-52-pmWriting sound definitions is a good practice for students, making all of us pay close attention to what something is and is not.

I’ve learned from Jessica Murk about Bongard Problems, which give students practice creating sound definitions based on what something is and is not.

1_1 Screen Shot 2016-11-14 at 8.30.14 AM.png

What can you say about every figure on the left of the page that is not true about every figure on the right side of the page? (Bongard Problem #16)

Last year when I asked students to define circle, I found it hard to select and sequence the responses that would best contribute to a whole class discussion without taking too much class time.

2-screen-shot-2016-10-25-at-1-16-23-pm3-screen-shot-2016-10-25-at-1-16-38-pm4-screen-shot-2016-10-25-at-1-16-48-pm

I remember reading Dylan Wiliam’s suggestion in Embedding Formative Assessment (chapter 6, page 147) to have students give feedback to student responses that aren’t from their own class. I think it’s still helpful for students to spend time writing their own definition, and possibly trying to break a partner’s definition, but I wonder whether using some of last year’s responses to drive a whole class discussion this year might be helpful.

  • a shape with no corners
  • A circle is a shape that is equal distance from the center.
  • a round shape whose angles add up to 360 degrees
  • A circle is a two-dimensional shape, that has an infinite amount of lines of symmetry, and a total of 360 degrees.
  • A 2-d figure where all the points from the center to the circumference are equidistant.

Screenshot 2016-01-27 09.07.23.png

Screenshot 2016-01-27 09.07.17.png

We recently discussed trapezoids.

Based on the diagram, how would you define trapezoid?

5 Trapezoid.png

Does how you define trapezoid depend on how you construct it?

Can you construct a dynamic quadrilateral with exactly one pair of parallel sides?

Trapezoid.gif

And so the #AskDontTell journey continues …

 
Leave a comment

Posted by on November 14, 2016 in Circles, Geometry, Polygons

 

Tags: , , , , , ,